теорема и доказательство, точка касательной окружности

Вопрос пользователя:

теорема и доказательство, точка касательной окружности

Илюха отвечает:

Теорема 1

Величина угла, образованного касательной и хордой, имеющими общую точку на окружности, равна половине угловой величины дуги, заключенной между его сторонами.

Доказательство

Рассмотрим угол NАВ, образованный касательной NA и хордой AB.
 
Проведем диаметр АС. Касательная перпендикулярна диаметру, проведенному в точке касания, следовательно, угол(CAN)=90°
Известно, что вписанный угол равен половине центрального угла дуги, на которую он опирается. Отсюда имеем, что угол(BAC) равен половине угловой величины дуги ВС или половине угла(ВОС). угол(BAC)=угол(BOC)/2.
угол(NAB)=90°-угол(BAC), отсюда получаем
угол(NAB)=90°-угол(BOC)/2=(180°-угол(BOC))/2=угол(АОВ)/2
то есть равен половине угловой величины дуги ВА.

Фактически, это вырожденный случай теоремы о величине вписанного угла, когда вершина угла достигает конца дуги (хорды). Одна из сторон угла при этом становится касательной.

Теорема 2 (о касательной и секущей)

Если из внешней точки к окружности проведены касательная и секущая, то квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью.

Доказательство

На рисунке, где MA – касательная, а MCB – секущая,

эта теорема выглядит так: МА2=МВ*МС. Докажем это.

По предыдущей теореме угол МАС равен половине угловой величины дуги АС. Но вписанный угол ABC тоже опирается на дугу AC, и по теореме о величине вписанного угла равен половине угловой величины дуги АС. Оба угла равны половине угловой величины дуги AC, следовательно, эти углы равны между собой. угол(MAC)=угол(ABC).
Принимая во внимание то, что у треугольников АМС и ВМА угол при вершине М общий, констатируем подобие этих треугольников по двум углам.
Из подобия имеем: MC/MA=МА/MB, откуда получаем МА2=МВ*МС

Добавить свой ответ