Расстояние от точки М до каждой из вершин правельного треугольника АВС,равно 4.Найти расстояние от точки М до плоскости АВС,если АВ равен 6см.

Вопрос от посетителя

Расстояние от точки М до каждой из вершин правельного треугольника АВС,равно 4.Найти расстояние от точки М до плоскости АВС,если АВ равен 6см.

Отвечает Илюха:

Если соединим все точки, то получим правильную треугольную пирамиду МАВС, у которой МА=МВ=МС=4см, АВ=ВС=АС=6см. Искомое расстояние – это перпендикуляр МН на нижнюю грань АВС. Так как треуг. АВС правильный, то точка Н будет центром описанной (вписанной тоже) окружности. АН=ВН=СН=R.

Радиус окружности, описанной около правильного треугольника вычисляется по формуле: R=a/√3, где а – это сторона треуг АВС.

R=6/√3 см.

Из треуг-ка АНМ по теореме пифагора: МН=√(АM^2-AH^2)=√(16-36/3)=2 см

Добавить свой ответ