В параллелограмме ABCD точка M – середина стороны AB. Докажите, что данный параллелограмм – прямоугольник

Вопрос пользователя:

В параллелограмме ABCD точка M – середина стороны AB. Докажите, что данный параллелограмм – прямоугольник

Илюха отвечает:

дано: авсд – параллелограмм

ам=мб мс=мд.

доказать: авсд – прямоугольник

 

доказательство: так как ам=мб ад=вс и мс=мд, то треугольники амд и амс равны по третьему признаку(по трём сторонам)

 так как эти треугольники равны, то и углы у них равны(угол всм = углу мда; угол свм = углу дамЖ угол смв = углу дма) ,  нас интересуют углы дам и свм. они односторонние, значит их сумма должна быть 180 градусов (так как вс и ад параллельны а ав их пересекает, а при пересечении двух параллельных прямых третьей сумма односторонних углов равна 180 градусов). следовательно угол дам и угол сбм = 90 градусов, а если в параллелограмме хотябы один угол прямой, то это прямоугольник.

всё.

 

уже решал)))

 

ps. вероятность ~100%, что  вы забыли указать, что вусловии сказано о том, что мс = мд

Добавить свой ответ